2018

Using the MICRON IV to Study Light Induced Retinal Degeneration

Dr. Rafael Ufret-Vincenty’s lab at University of Texas Southwestern Medical Center has developed a novel model for light damage using the Micron IV rodent retinal imaging camera. This quick and consistent light damage model leads to fundus abnormalities and retinal thinning as measured by the Micron image-guided OCT and semi-automated layer analysis tool, Insight. In two elegant articles, the researchers provided proof of concept in pigmented mice, which are a better model for human eye light damage than overly sensitive albino mice, which demonstrated bleached fundus and outer retinal layer thinning.

2017

Micron Reveals Decreased Retinal Ganglion Cell Arborization in a Mouse Model of Retinal Ischemia

Researchers Dailey et al, in the Mitton Lab at Oakland University used the Micron retinal imaging camera to examine retinal ganglion cell (RGC) survival in a mouse model of retinal ischemia. Oxygen-induced retinopathy (OIR) in mice recapitulates critical factors of the human diseases retinopathy of prematurity and diabetic retinopathy. Mice pups were raised in hyperoxegenated air (75% oxygen) for five days and then returned to room air (20% oxygen), which lead to pathological changes in the vascular and neural growth.

2017

Micron Retinal Imaging System Provides Ground Breaking Research on Parkinson’s Disease

Phoenix Research Labs is pleased to announce ground breaking research on Parkinson’s Disease by Price et al using the Micron Retinal Imaging System.  Abnormally high concentration of the protein a-synuclein in the brain is linked with the physical and mental deficits caused by Parkinson’s Disease {PD) and Dementia with Lewy Bodies (DLP).